Terra Sigillata aus Ausgrabungen in Bliesbruck Chemische Analysen und deren Konsequenzen

von

Gerhard MÜLLER

Über Jahrtausende hat der Mensch riesige Mengen an Keramik erzeugt, meist ohne besondere Anforderungen an Schönheit und Originalität, sodass aus deren Scherben nur selten eindeutige Hinweise auf Alter und den Ort der Fertigung zu ziehen waren. Umso bedeutsamer ist für Archäologen verzierte und gestempelte Ware, soweit deren Merkmalanalyse sich auf Gefäßform und -Verzierung beschränkt. Ideal war und ist hier die römische Terra Sigillata Der Beitrag erweitert die bereits vorliegende Merkmalanalyse durch chemische Merkmale, die die Aussagekraft auch kleiner Fragmente deutlich erhöhen kann.

Das heutige Saarland weist bezüglich der Produktion von Terra Sigillata zwei Örtlichkeiten auf, die beide von SPRATER 1912 beim Eschweilerhof und 1912/13 in Blickweiler erstmals ergraben wurden. Reichhaltige Funde lieferten die Basis für Zuordnungen von Grabungsfunden in Museen sowohl zu Blickweiler wie zum Eschweilerhof.

Grabungen in Bliesbruck lieferten Terra Sigillata, die von der Datierung der Fundschichten her in Diskrepanz zu den etablierten Datierungen der Töpfereien stand. PETIT (2001,S.97) formulierte daher:

"Pour les productions «tardives» de ces ateliers, découvertes à Bliesbruck, il serait nécessaire, parallèlement, de vérifier, par un programme d'analyse de pâte, la cohérence avec les productions précoces des potiers L.A.L., Avitus, Cambo, L.AT.AT. er étudier ainsi si celles-ci ont eu lieu sur les mêmes sites ou s'il y a lieu de rechercher d'autres lieux de productions. Ces analyses permettraient aussi de caractériser les productions de Clamosus et de voir si ce potier a des relations avec les successeurs tardifs de L.A.L, Avitus, Cambo ou L.AT.AT."

Die Bedeutung dieser Aussage liegt aus Sicht des Verfassers zunächst einmal darin, dass ein Archäologe der Meinung ist, dass chemische Analysen bei solchen Problemen hilfreich sein könnten. Wenn eine solche Meinung üblich wäre, könnte der Verfasser sich vor Probenmaterial nicht retten.

Vor dieser Forderung von PETIT gab es allerdings schon eine Serie von Analysen an Terra Sigillata der Region durch Gerwulf SCHNEIDER (1978), die jedoch zu dieser Fragestellung noch nichts beitragen konnten.

2019 überließ Jean-Paul PETIT, als Leiter des Museums dem Verfasser aus den Sammlungsbeständen in Bliesbruck 42 Proben, die alle der Mindestanforderung von 0,6 g entsprachen, sodass letztlich vollständige Datensätze, einschließlich Glühverlusten vorliegen. Verglichen mit den jeweils wenigen Proben, die der Verfasser in MÜLLER (2020) zur Verfügung hatte, schließt eine solche Menge jegliche Zufälligkeiten aus.

Der Verfasser ist Herrn Dr. Jean-Paul PETIT für diese Großzügigkeit zu tiefstem Dank verpflichtet. Wieweit die Archäologie daraus weiterführende Schlüsse ziehen kann, ist ausschließlich deren Angelegenheit. Der Verfasser geht hier nur auf die Analysen selbst und ihre geologischen Grundlagen ein, sowie direkt daraus zu ziehende Schlüsse. Die Analysentabellen enthalten daher nur die Bezeichnung des Verfassers, nicht auch die Katalog-Nummern des Museums, wie diese bei PETIT (2001) zu finden sind.

Analysen liefern nur Aussagen zu den Proben selbst. Zeitliche und örtliche Aussagen kommen nur aus den Zusammenhängen, in denen die Proben stehen. Der Verfasser wird sich hier daher auf die Grundlagen beschränken; Folgerungen daraus sind Sache der Archäologie.

Ergebnisse:

- Die Analysen passen alle in den Rahmen von MÜLLER (2020), sind also der Region und den ostgallischen Töpfereien zuzuordnen.
- Von den, vom Verfasser untersuchten Töpfereien passen die Scherben bis auf zwei Ausnahmen lediglich zu "Blickweiler 2", nicht zu "Blickweiler 1".
- Die Scherben stammen also nicht aus der bekannten Töpferei aus der Nähe des ehemaligen Kalkwerks, die von SPRATER zu einem Teil ausgegraben wurde.
- "Blickweiler 2" beruht auf einem ganz kleinen Datensatz, den man nicht gesichert dem Ort Blickweiler zuschreiben darf.

Abgesehen von der von SPRATER ergrabenen Töpferei, gab es noch:

- die Grabung von KLEIN im Jahr 1926, deren genauer Ort noch nicht gesichert erscheint.
- Funde der Familie BUSTERT auf deren Grundstück,
- -Untersuchungen von STINSKY u.a. in den Jahren 2013, 2014 und 2016 am Rand dieses Grundstücks und in der Nachbarschaft.
- verschiedene Nachweise von Scherben im Umkreis der Kirche bei Bauarbeiten.

Funde liegen davon an unterschiedlichen Orten, waren für den Verfasser aber nicht verfügbar.

Diese könnten durchaus hinreichend sein, "Blickweiler 2" dem Ort zuzuweisen.

- Eine vermutete Zuordnung bestimmter Töpfernamen zur Töpferei beim Eschweilerhof ist auszuschließen. Damit gibt es außer den von SPRATER beim Eschweilerhof ausgegrabenen Proben noch kein weiteres Stück, das durch eine Analyse als zum Eschweilerhof gehörig anzusehen wäre.

Der Verfasser (MÜLLER 2020) hat darauf verwiesen, dass er den Eschweilerhof eher als einen Versuch sieht, denn als einen richtigen Töpferei- Standort. Man muss daher nun auch die Frage stellen, was es mit den nach archäologischen Kriterien als vom Eschweilerhof stammenden Beständen aus Grabungsfunden auf sich hat.

Kurzgefasst:

Die Terra Sigillata von Bliesbruck entspricht der mangelhaft definierten Gruppe "Blickweiler 2" des Verfassers. Es besteht vermutlich die Möglichkeit, an bislang nicht analysiertem Material dies zu sichern.

Entgegen Erwartungen kommt der Eschweilerhof als Produktionsort nicht in Frage. Im Gegenteil stellt sich die Frage, ob bisherige Zuschreibungen von Grabungsfunden zum Eschwei-

Analytik:

In der Lebenszeit des Verfassers haben sich die analytischen Möglichkeiten mit einer kaum glaubhaften Geschwindigkeit erweitert, sodass Spitzenforschung mit Massen von wenigen Milligramm schon ihre Ergebnisse erzielen kann. Solche Spitzenleistungen haben allerdings ihren Preis, da sie sehr teure Geräte und Personal benötigen. Wenn keine Spitzenleistungen, sondern eher industrieller Standard gefordert ist, kommt man in einen Preisrahmen, der auch für die hier nötige Analytik erträglich erscheint. Die hier zu Grunde liegenden Analysen kosten jeweils etwa 60,00 €. Die Kosten wurden vom Verfasser getragen.

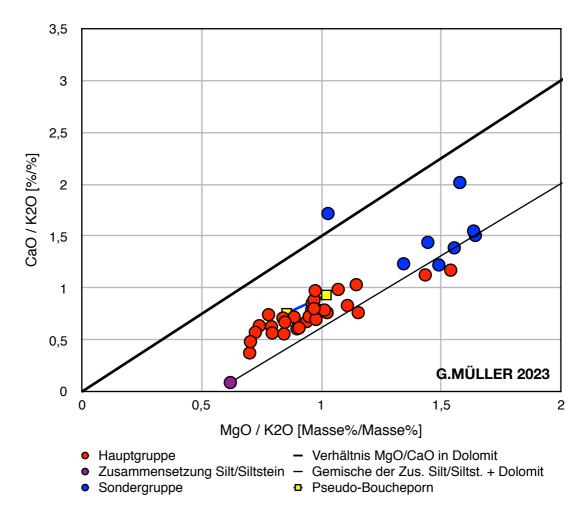
lerhof noch als gesichert gelten können.

Die Analysen der Scherben liefern nur Massenanteile der chemischen Elemente. Die Scherben selbst sind Objekte, deren Grundmasse aus der Natur stammt. Eine erfolgreiche Deutung der Analysen erfordert, dass man die entsprechenden geologischen Grundlagen kennt. Die Forderung ist berechtigt. Ihr entgegen steht aber hier in der Region, dass es keine geologische Forschung mehr gibt, die die nach den analytischen Möglichkeiten heute wünschbaren Grundlagen geschaffen hat.

Klar ausgedrückt. Als der Verfasser 2009 die ersten Analysen bekam, konnte er damit selbst herzlich wenig anfangen. Erst nach und nach kamen benötigte Daten und das notwendige Verständnis dafür. Der Verfasser sieht sich lediglich am Anfang einer Entwicklung, die auf Dauer klären wird, welche chemische Elemente in welcher Kombination die Aussagen liefern können, die saubere Zuordnungen der Rohstoffe zu den geologischen Grundlagen ergeben. Von vielen Aussage-Möglichkeiten beschränkt sich der Verfasser daher hier auf wenige.

Bei MÜLLER (2020) finden sich Erläuterungen zu den benutzten Diagrammen.

CaO-Gehalte

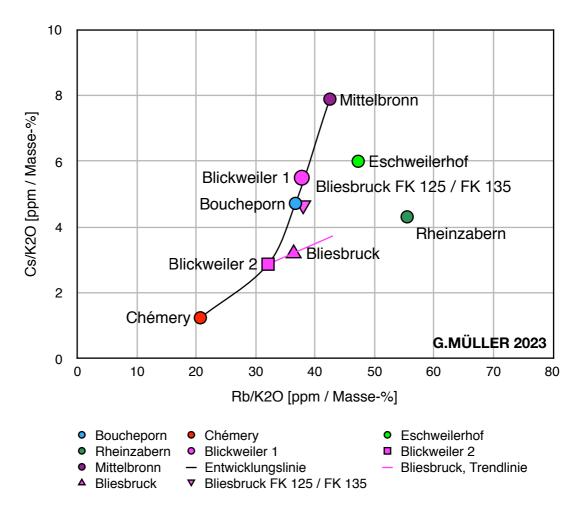

Die primitivste Aussage bezieht sich hier auf die CaO-Gehalte. Die Keramik aus Bliesbruck, wie die gesichert aus Blickweiler stammende hat Dolomit-Gehalte im Rohmaterial und damit auch entsprechende CaO-Gehalte (grob von 2 - 9%), bei Scherben vom Eschweilerhof lediglich um 0,2%.

Allein auf Grund der CaO-Gehalte scheidet eine Herkunft vom Eschweilerhof völlig aus.

CaO/MgO/K₂O

Das nachfolgende Diagramm, das eine Zuordnung der CaO-Gehalte auf ursprüngliche Dolomit- oder auf Calcit-Gehalte ermöglicht, weist zwei Gruppen aus (rot und blau), die ursprünglich auf ein anderes Kriterium zurückgehen und hier über die Farbe eingebracht werden. Die beiden Gruppen erscheinen deutlich getrennt.

Die "Sondergruppe" ist das Ergebnis eines Kompromisses. Würde man die beiden roten Datenpunkte in der direkten Nachbarschaft der blauen zu dieser "Sondergruppe" hinzuschlagen, so gäbe es an anderen Stellen wieder Diskrepanzen. Letztlich heißt dies, diese Gruppe erscheint manchmal deutlich abgegrenzt, in anderen Fällen nicht so. Ob sie am Ende eine eigene Bedeutung haben kann, ist offen.

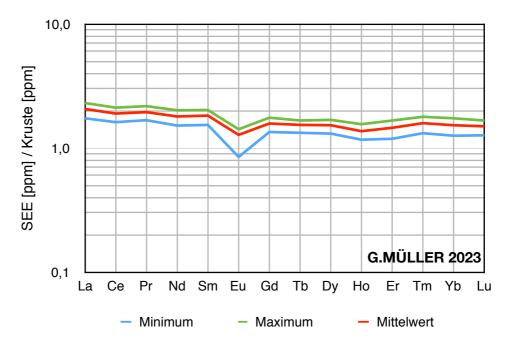

Abb. 1:

Das Diagramm stellt das Verhältnis von Mg zu Ca in Abhängigkeit von jeweils dem gleichen K-Gehalt dar. Der Mg-Gehalt wird verstanden als einmal zu Illit gehörig (Zusammensetzung Silt/Siltstein) für den Rest zu Dolomit.

Die blaue Gruppe würde bezogen auf gleichen K2O-Gehalt grob etwa fast den doppelten Dolomit-Gehalt im Rohmaterial enthalten. Die rote Gruppe hätte gegenüber der blauen einen leichten Überschuss an CaO. Man könnte das so deuten, dass eventuell Dolomit teilweise zersetzt und MgO abgeführt wurde.

An dieser Stelle sind dies ausdrücklich nur Spekulationen, die zeigen sollen, welche Deutungen aus komplexen Diagrammen hervorgehen können.

K/Rb/Cs


Abb. 2:

Das Diagramm beschreibt die Veränderung des Verhältnisses von Rb zu Cs bei jeweils gleichem K-Gehalt.im Gitter von Glimmer/Illit. K kann leichter ausgelöst werden als Rb, dieses wiederum leichter als Cs, entsprechend kommt es zu Veränderungen des Rb/Cs-Verhältnisses.

Im Diagramm liegen die Proben aus Bliesbruck nicht direkt auf der idealen Linie, die die Entwicklung der Gehalte bei der fortschreitenden Verwitterung der Glimmer/Illite beschreibt. Sie bilden aber eine Trendlinie, auf der auch Blickweiler 2 liegt. Neben der allgemeinen Entwicklung, die wohl weitgehend vor der Ablagerung der Sedimente anzunehmen ist, muss eine weitere angenommen werden, die gegebenenfalls später unter anderen Bedingungen stattgefunden hat. Dazu hat der Verfasser keinerlei begründbare Vorstellung.

Die Proben FK 125 und FK 135 liegen in diesem Diagramm bei den Werten von Boucheporn. Ihrer SEE-Signatur nach gehören sie aber klar zu Blickweiler. Auch in anderen Diagrammen passen sie in den Gesamtrahmen.

Seltene-Erd-Elemente (SEE)-Signaturen

Abb. 3:SEE-Signatur aller Analysen von Bliesbruck

Die SEE-Signaturen aller Proben sind sehr ähnlich. Das lässt sich gut darstellen in einem Diagramm, das neben den Mittelwerten, jeweils auch Maximum und Minimum der einzelnen Elemente zeigt.

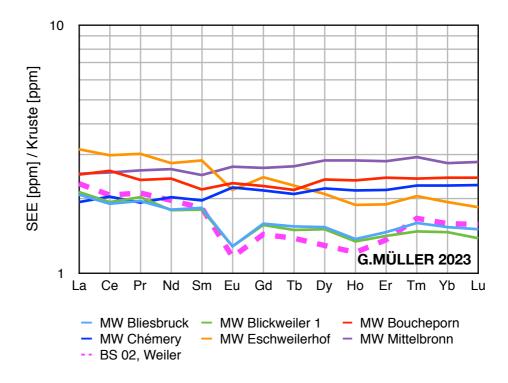


Abb. 4:

Mit der SEE-Signatur der Proben von Bliesbruck werden hier sinnvolle weitere Signaturen verglichen.

2023-04-25 S

Die Abb. 4 zeigt zum Vergleich mit dem Mittelwert von Bliesbruck noch die Mittelwerte von Blickweiler 1, Eschweilerhof, Boucheporn, Chémery und Mittelbronn. Dazu noch die SEE-Signatur eines Feinsandsteins aus dem oberen Buntsandstein von Weiler. Auf den ersten Blick ist das Ergebnis verwirrend. Man kann das Diagramm jedoch sinnvoll zerlegen.

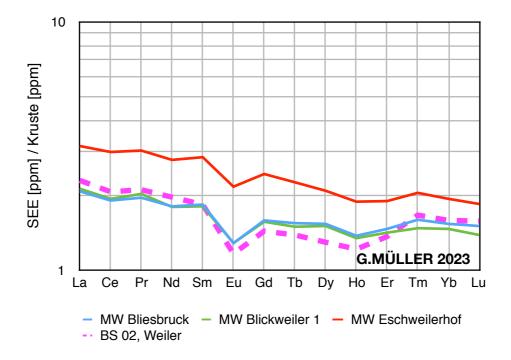
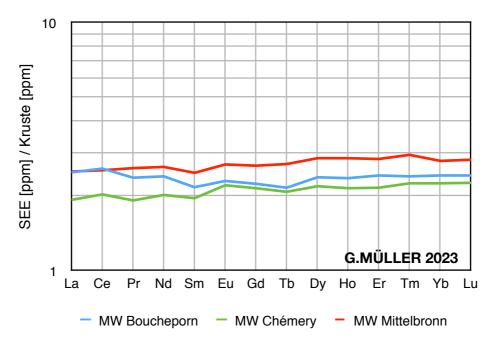


Abb. 5:


Eine Teilmenge der Signaturen aus Abb. 4, die in ihrem Verlauf weitgehend übereinstimmen.

Das erste der daraus folgenden Diagramme zeigt, dass die SEE-Signaturen der Proben aus Bliesbruck und der von Blickweiler 1 im Grunde gleich sind. Auch die Probe aus dem Buntsandstein passt dazu.

Die SEE-Signatur vom Eschweilerhof zeigt deutlich höhere Werte, doch im Prinzip ebenfalls den gleichen Verlauf. Der Rohstoff vom Eschweilerhof ist bezüglich der SEE weniger verdünnt durch Komponenten, die zu den SEE nicht oder nur wenig beitragen.

Sieht man von der absoluten Größe der Werte ab, so sind die Signaturen identisch. Das bedeutet, dass wir im Zeitraum oberer Buntsandstein bis einschließlich mittlerer Muschelkalk im Grunde bezüglich der SEE-Signatur ziemlich einheitliche Verhältnisse vorfinden, also nach dem Verlauf der Signatur allein nicht unterscheiden können.

Hinzuweisen ist darauf, dass die Signatur von den leichten SEE (links) zu den schweren SEE (rechts) eine klar fallende Tendenz aufweist. Eine negative Eu-Anomalie ist deutlich.

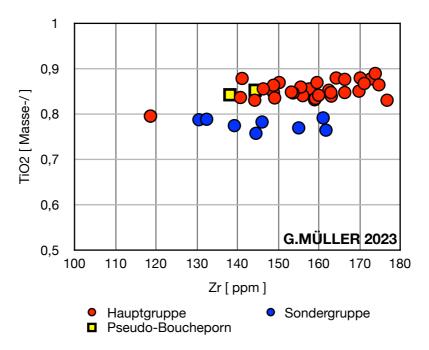


Abb. 6:Die aus Abb. 4 noch restlichen SEE-Signaturen.

Vergleicht man damit nun die restlichen SEE-Signaturen von Boucheporn, Chémery und Mittelbronn, so entsprechen sich die von Chémery und Mittelbronn, die von Boucheporn liegt dazwischen. Ganz wesentlich aber, hier ist die Tendenz umgekehrt mit einem Ansteigen zu den schweren SEE hin. Der Verlauf ist ruhiger. Eu-Anomalien sind sehr schwach und positiv.

Es gibt also zwei Provinzen, im S mit gleichmäßigerem Verlauf der Signatur und mit steigender Tendenz von leichten zu schweren SEE, im N mit unregelmäßigerem Verlauf und fallender Tendenz von leichten zu schweren SEE. Innerhalb der jeweiligen Provinzen sind die Verläufe der einzelnen Orte prinzipiell kaum unterscheidbar.

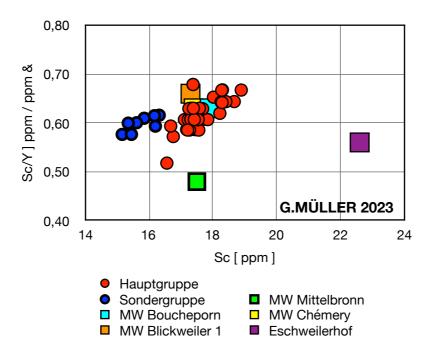

Zr/TiO₂

Abb. 7: Verhältnis von Zr zu TiO₂ in den Analysen von Bliesbruck

Das Diagramm wird hier nur genutzt als ein Beispiel für die Darstellung der "Sondergruppe". Zu Grunde liegt wohl der erhöhte Dolomit-Gehalt, der sowohl eine relative Erniedrigung der Zr-, wie auch der TiO₂-Gehalte bewirkt.

Sc/Y

Abb.8:

Verhältnis von Sc zu Y bezogen auf den Y-Gehalt der Analysen von Bliesbruck, verglichen mit Mittelwerten der weiteren Töpfereien.

In diesem Diagramm sind Bliesbruck, Blickweiler 1, Bouchporne und Chémery nicht unterscheidbar, dafür Mittelbronn und vor allem Eschweilerhof umso stärker.

Ansonsten setzt sich die "Sondergruppe" hier deutlich ab.

Fazit

Das Ergebnis entspricht sicherlich nicht den Erwartungen der Archäologie und stellt Fragen hinsichtlich der Bewertung der Töpferei vom Eschweilerhof. Es liefert aber ein Beispiel, dass auch chemische Eigenschaften von Tongefäßfragmenten geeignet sind, eine archäologische Merkmalanalyse sinnvoll zu ergänzen.

Der Verfasser ist zufrieden. Es lassen sich die Produkte der Töpfereien über die Analysen mit den Gesteinen und der Geologie verknüpfen und deuten. Das wurde wesentlich dadurch erleichtert, dass Produkte vom Ort der Entstehung vorlagen.

Literatur

Der Verfasser hat sich nur um Literatur bemüht, die mit dem Standort eine Beziehung aufweist.

- GRÜNENWALD: Historisches Museum der Pfalz. Bericht, Mitteilungen des Historischen Vereines der Pfalz, XXIII, S.245-284; Speier 1899. [S.255, erste Hinweise auf Töpferei.]
- SPRATER, Fr[iedrich]: Blickweiler (Pfalz), Terra-sigillata-Manufaktur. Römisch-germanisches Korrespondenzblatt, Jhrg. VI, S.71; Trier 1913. [Soweit der Verfasser erkennen kann, verzichtet die archäologische Literatur darauf, diese Erstveröffentlichung von SPRATER zu zitieren und zu nutzen. Diese wird nach dem Literaturverzeichnis angehängt.]
- BOHN, O[scar]: Römische Griffelinschrift von Blickweiler. Pfälzisches Museum Pfälzische Heimatkunde, Jhrg. 1923, S.39-40; Speyer. [Dieser Aufsatz wurde in KNORR u. SPRATER 1927, S.115-118 übernommen.]
- BOHN, O[scar]: Eine Töpferrechnung aus Blickweiler in der Westpfalz. Germania, Jhrg. 7, S.64-68; Bamberg 1923. [Gegenüber BOHN (1923) erweiterter Umfang.]
- ANONYM: Fundchronik 1926. II. Blickweiler. Germania, Jhrg.10, S.157-161 [Blickweiler S.157]; Bamberg 1926.
- K[AUB, Edwin]: Römische Funde in Blickweiler. Aus heimatlichen Gauen, Jhrg. 1926, Nr.53, Beilage zu "Pfälzischer Merkur. [Pfälzische Landesbibliothek: Palatina 98/2. Auflösung des Namenskürzel "k" durch Hans Cappel, Blieskastel.]

- KLEIN, C[arl]: Verzeichnis der in den Jahren 1923-1927 im Saargebiet festgestellten Bo denfunde. – Berichte des Konservators der geschichtlichen Denkmäler des Saargebiets, Nr. 2, S.76-81; Saarbrücken 1927.
- KNORR, R[obert], SPRATER, Fr[iedrich]: Die westpfälzischen Sigillata-Töpfereien von Blickweiler und Eschweiler Hof. — Veröffentlichungen des Histor. Museum der Pfalz e.V. Histor. Verein der Pfalz, Band 3; Speier 1927.
- KEUNE, J[ohann[B[aptist]: Besprechung von KNORR u. SPRATER (1927). Germania, Jhrq.12, S.129-132.
- REUBEL, Günther: Die Westpfälzischen Sigillata-Töpfereien von Blickweiler und Eschweilerhof. — Pfälzisches Museum - Pfälzische Heimatkunde, Jhrg. 45/24, S.208-209; Spever 1928
- STUMPF, Hugo(Schriftl.): 1000 Jahre Blickweiler— Blickweiler, 1972 [Darin Texte von Heinz SPIES, Johann WERNY und Hugo STUMPF.]
- SCHNEIDER, Gerwulf: Anwendung quantitativer Materialanalysen auf Herkunftsbestimmungen antiker Keramik. – Berliner Beiträge zur Archäometrie, Bd.3, S.63-122; Berlin 1978.
- KNOPF, Thomas: Ein neuer ostgallischer Töpfer reliefverzierter Terra Sigillata. Fundberichte Baden-Württemberg, 20, 1995, S.707-715.
- PETIT, Jean-Paul: La diffusion de la Sigillée moulée de Bliesbruck (Moselle). Contribution à l'étude des ateliers de Blickweiler et Eschweiler-Hof. — in: DEMAROLLE, Jeanne-Marie (Herausq.): Histoire et céramologie en Gaulle mosellane (Sarlorlux), S. 63-180; Montagnac 2001.
- HAUPT, Peter, STINSKY, Andreas: Neues aus der Terra Sigillata-Manufaktur von Blickweiler, Saarpfalz-Kreis. — Denkmalpflege im Saarland. Jahresbericht 2014, S.42-45; Saarbrücken 2015.
- HAUPT, Peter, RIEHLING, Johanna, STINSKY, Andreas: Römisches Tischgeschirr hergestellt im Saarland. — Archäologie in Deutschland, Jhrf. 2016, Heft 1, S.51.
- HAUPT, Peter, NEY, Johanna, STINSKY, Andeas: Tongruben im römischen Blickweiler. Denkmalpflege im Saarland. Jahresbericht 2016, S.44-46; Saarbrücken 2017
- STINSKY, Andreas: Neue Betrachtungen zur ostgallischen Tera Sigillata-Töpferei von Blickweiler und deren Umfeld. — in: FECHT, Bärbel, ADLER, Wolfgang (Redaktion): Landesarchäologie Saar 2010-2015. – Denkmalpflege im Saarland, Bd. 9; Min. f. Bildung u. Kultur - Landesdenkmalamt, S.429-458; Saarbrücken 2017
- STINSKY, Andreas: Landschaftsarchäologische Studien zur römischen Besiedlung im südöstlichen Saarland und Umgebung. - Universitätsforschungen zur Prähistorischen Archäologie, Band 334; Bonn 2019.
- MÜLLER, Gerhard: Zuordnung von Produkten ostgallischer Terra-Sigillata-Manufakturen mittels Spurenelementanalysen. — Nonnweiler 2020.[www.geosaarmueller.de]

Römisch-germanisches Korrespondenzblatt, Jahrg. VI, S.71; Trier 1913.

— 7I —

Blickweiler (Pfalz). Terra-sigillata-Manufaktur.

40. Ostern dieses Jahres konnte ich in dem Dorse Blickweiler bei Blieskastel (Bez.-A. St. Ingbert) eine bisher vollständig unbekannte Terra-sigillata-Manusaktur nachweisen. Im Auftrage des Vereins Historisches Museum der Pfalz unternahm ich sosort eine dreiwöchentliche Grabung. Bei dieser Gelegenheit sanden wir die Reste eines 12,60 m langen und 4,50 m breiten Gebäudes, dessen Sohle 1,50 m tief lag. An das Gebäude direkt anschließend lag ein kleiner Töpserosen von 1,20 m Durchmesser, der von dem Gebäude aus geschürt werden konnte. In nächster Nähe sand sich eine Absallgrube von 20 m Durchmesser, die ein sehr reiches Material an Osenbestandteilen, Oseneinsätzen, Formschüsselsragmenten, Fehlbränden und zerbrochenem Ge-

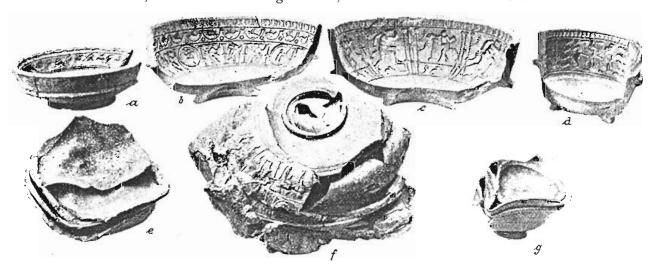


Abb. 30. Sigillala-Formschüsseln und Abfallstücke von Blickweiler.

schirr ergab, von denen Abbildung 30 eine Probe gibt. Auf dem bis jetzt gereinigten Scherbenmaterial finden sich nachfolgende Bodenstempel: ALBIL-LVS (3 Varianten), APER (3 Varianten), AVSTRVS (2 Varianten), BITVNVS (3 Varianten), BORIVS, CANDIDVS, COCVS, EBVRVS, MAIOR, MARCEL-LVS, MATTO, MICCIO (2 Varianten), PATERNVS, PETRVLLVS (2 Varianten), PLACIDVS (2 Varianten), POTTVS, PRISCVS, REGINVS, SACIRO (2 Varianten), SECCO, SEVERVS, TOCCA (2 Varianten), VERECVNDVS (2 Varianten), VIMPVS. Auf Bilderschüsseln fand sich bis jetzt nur der Stempel L. A. L. Mehrere Formschüsselstücke sowie zahllose Bilderschüsselfragmente zeigen das bekannte Monogramm QD, das in Lezoux auf Bilderschüsseln des Doeccus vorkommt. Ein abschließendes Urteil über die Blickweiler Terrasigillata-Fabrik ist z. Zt. noch nicht möglich. Zweisellos bestehen Beziehungen zu den älteren Manufakturen von Lezoux, La Madelaine und Lavoye, ferner zu der fast gleichzeitigen von mir im vergangenen Jahre untersuchten nahegelegenen Manufaktur Eschweiler Hof (vgl. R.G. K.-Bl. V S. 78), sowie zu den späteren Fabriken von Rheinzabern.

Speier.

Fr. Sprater.

	SiO2	Al2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K20	TiO2	P2O5	LOI	
FK 105	55,6	19,44	7,5	0,08	5,02	4,08	0,64	5,67	,851	0,21	1,21	99,09
FK 106	57,45	18,78	7,31	0,081	4,19	4	0,47	5,38	,853	0,19	1,41	98,70
FK 107	56,47	17,98	7,2	0,079	5,14	3,92	0,55	5,37	,831	0,21	1,61	97,75
FK 108	58,28	18,81	7,02	0,072	4,02	2,15	0,45	5,74	,839	0,19	3,23	97,57
FK 109	51,64	15,49	6,53	0,089	8,42	7,06	0,34	3,66	,752	0,59	4	94,57
FK 110	56,51	18,69	7,2	0,076	4,33	3,72	0,61	5,84	,824	0,67	2,04	98,47
FK 111	56,32	18,48	7,08	0,078	4,59	3,64	0,74	5,8	,828	0,46	2,71	98,02
FK 112	49,31	15,46	5,81	0,09	4,31	7,21	0,26	4,2	,691	1,02	12,36	100,7
FK 113	57,26	18,29	7	0,079	5,15	4,24	0,5	5,36	,841	0,21	1,84	100,8
FK 114	55,94	18,53	6,99	0,082	5,25	4,67	0,69	5,45	,835	0,23	1,87	100,5
FK 115	52,29	17,78	7,04	0,099	7,01	5,51	0,32	4,89	,800	0,57	4,39	100,7
FK 116	55,94	18,53	7,13	0,083	5,19	3,75	0,35	5,53	,858	0,26	2,79	100,4
FK 117	54,52	17,28	6,5	0,097	7,04	6,47	0,52	5,24	,781	0,27	1,75	100,5
FK 118	55,72	18,92	7,35	0,074	4,49	3,2	0,31	5,65	,851	0,24	2,65	99,46
FK 119	55,63	18,33	7,01	0,076	4,99	3,82	0,53	5,26	,824	0,23	2,44	99,12
FK 120	56,98	19,24	7,7	0,081	4,63	3,07	0,38	5,49	,864	0,19	2,2	100,8
FK 121	57,08	18,93	7,45	0,071	4,73	4	0,35	5,63	,835	0,26		99,35
FK 122	54,62	18,21	8,07	0,094	5,26	4,8	0,62	5,43	,823	0,75	2,04	100,7
FK 123	55,73	18,55	7,02	0,084	5,31	4,25	0,79	5,39	,826	0,22	2,41	100,6
FK 124	54,31	17,73	7,01	0,086	5,8	3,84	0,32	5,03	,826	0,32	3,64	98,91
FK 125	54,95	19,5	7,21	0,078	4,91	4,35	0,3	5,75	,838	0,52	2,42	100,8
FK 126	54,22	16,67	6,32	0,097	6,96	5,71	0,32	4,67	,739	0,4	4	100,1
FK 127	56,17	18,57	7,06	0,082	5,52	4,11	0,46	5,39	,845	0,23	2,09	100,5
FK 128	55,39	18,23	6,84	0,08	5,39	3,85	0,63	5,52	,820	0,25	2,3	99,28
FK 129	54,43	18,29	6,94	0,086	5,53	5,53	0,41	5,68	,820	0,33	2,7	100,8
FK 130	55,02	19,49	7,39	0,077	5,16	3,49	0,38	5,75	,857	0,19	2,08	99,87
FK 131	55,28	18,42	7,12	0,074	4,84	3,83	0,48	5,71	,827	0,33	2,04	98,94
FK 132	53,11	17,8	6,89	0,074	6,92	6,9	0,38	4,8	,772	0,44	2,44	100,5
FK 133	55,03	17,82	6,79	0,081	5,19	4,04	0,39	5,13	,809	0,18	3,31	98,77
FK 134	56,19	17,99	6,88	0,073	4,11	2,82	0,86	5,83	,814	0,39	2,37	98,31
FK 135	53,59	19,53	6,99	0,078	5,84	5,34	0,37	5,72	,829	0,2	2,01	100,5
FK 136	53,09	18,07	6,83	0,074	7,55	6,74	0,43	4,86	,780	0,55	1,73	100,7
FK 137	55,3	19,54	7,4	0,078	5,01	3,96	0,43	5,91	,853	0,27	1,8	100,6
FK 138	56,38	18,68	7,06	0,084	5,26	4,36	0,49	5,43	,829	0,18	1,73	100,5
FK 139	55,72	19,5	7,36	0,077	5,16	3,5	0,38	5,69	,841	0,18	2,29	100,7
FK 140	53,22	17,06	6,56	0,077	7,8	7,15	0,37	4,55	,756	0,18	1,99	99,71
FK 141	55,28	18,4	7,05	0,082	5,79	4,34	0,35	5,22	,827	0,31	2,39	100
FK 142	53,95	17,1	6,63	0,084	7,75	7,34	0,36	4,74	,749	0,22	1,65	100,6
FK 143	52,79	16,28	6,34	0,095	6,85	8,75	0,39	4,34	,742	0,53	1,54	98,65
FK 144	54,51	18,19	6,84	0,097	6,3	5,68	0,34	5,5	,823	0,26	2,14	100,7
FK 145	54,17	18,53	7,08	0,081	5,39	4,97	1,46	5,03),811	0,22	2,09	99,84
FK 146	51,38	18,59	7,35	0,074	7,87	5,99	0,35	5,11	,777	0,28	1,22	99,01

	Rb	Cs	Be	Sr	Ba	Ga	In	TI	Ge	Sn	Pb	As	Sb	Bi	Cu	Ag	Zn
FK 105	202	17,9	4	144	613	27	< 0.2	0,4	2	5	25	20	2,1	< 0.4	40	0,6	110
FK 106	196	17,2	4	146	650	27	< 0.2	1,4	2	8	56	17	2	0,5	70	0,9	120
FK 107	188	17,1	4	138	646	26	< 0.2	0,3	2	5	38	21	2,1	< 0.4	40	0,5	100
FK 108	191	15,4	4	119	795	26	< 0.2	1,2	2	5	34	18	1,8	0,4	40	0,7	100
FK 109	130	10	3	134	722	22	< 0.2	0,5	2	5	30	22	2	< 0.4	40	0,7	100
FK 110	203	17,3	4	153	646	27	< 0.2	0,6	2	5	30	15	1,7	< 0.4	40	0,6	110
FK 111	204	16,9	4	148	694	27	< 0.2	0,9	2	6	37	23	1,9	< 0.4	40	0,7	110
FK 112	175	12,5	3	120	843	22	< 0.2	0,8	2	5	29	10	1,4	0,9	260	1,4	130
FK 113	201	17,6	4	143	647	25	< 0.2	0,3	1	17	51	14	1,4	< 0.4	70	0,9	100
FK 114	195	17,2	4	145	635	25	< 0.2	0,4	2	5	32	22	2,2	0,8	90	1,1	100
FK 115	172	15,3	4	137	792	23	< 0.2	0,8	2	5	28	19	1,8	0,8	120	1	120
FK 116	194	16,9	4	137	648	26	< 0.2	1	2	6	35	22	1,8	0,7	100	1	100
FK 117	180	15,1	3	148	588	24	< 0.2	0,4	2	5	33	25	1,7	0,5	60	0,9	100
FK 118	208	18,6	4	137	660	26	< 0.2	0,9	2	5	25	17	1,8	0,6	60	0,8	90
FK 119	202	17,7	3	132	633	25	< 0.2	0,4	2	5	26	19	2	< 0.4	50	0,8	100
FK 120	203	17,6	4	129	648	26	< 0.2	0,9	2	6	28	16	2,3	0,6	50	0,7	100
FK 121	213	19,2	4	141	643	27	< 0.2	0,9	2	6	26	18	2,2	< 0.4	50	0,7	100
FK 122	190	16,1	3	144	627	26	< 0.2	0,4	2	5	28	19	1,8	< 0.4	50	0,8	110
FK 123	200	18	3	137	614	26	< 0.2	0,4	2	5	28	24	2,1	0,5	40	0,8	100
FK 124	187	15,5	3	120	633	26	< 0.2	0,8	2	6	30	23	2	0,6	50	0,8	100
FK 125	226	26,6	4	131	595	27	< 0.2	1	2	5	36	21	2	0,6	40	0,8	100
FK 126	181	15,5	3	133	921	23	< 0.2	0,5	2	5	32	18	1,4	0,4	50	0,8	130
FK 127	189	16,1	4	141	633	25	< 0.2	0,3	2	11	83	18	2,1	< 0.4	60	0,8	100
FK 128	213	18,9	4	134	604	28	< 0.2	0,2	2	6	28	18	2,2	< 0.4	60	1	130
FK 129	197	17,7	4	147	671	25	< 0.2	0,9	2	6	66	19	2,3	0,5	120	0,8	100
FK 130	212	20	4	136	609	27	< 0.2	1,1	2	6	32	22	2,4	0,6	40	0,7	90
FK 131	205	18,3	4	136	604	26	< 0.2	0,8	2	5	31	19	2,8	< 0.4	40	0,9	80
FK 132	171	13,1	4	132	548	24	< 0.2	0,6	2	6	40	11	1,9	< 0.4	80	0,8	100
FK 133	196	17,4	4	130	588	25	< 0.2	1	2	6	32	14	2,2	< 0.4	70	0,8	80
FK 134	207	18,7	4	125	586	25	< 0.2	0,7	2	28	663	13	2,1	< 0.4	50	0,9	90
FK 135	210	26	4	148	587	26	< 0.2	1	2	6	35	20	2,5	0,6	40	0,7	90
FK 136	170	13	4	138	585	24	< 0.2	0,5	2	5	28	14	1,7	< 0.4	40	0,7	90
FK 137	201	18,4	4	141	622	26	< 0.2	0,7	2	5	28	19	2,3	< 0.4	40	0,7	80
FK 138	195	17,1	4	140	622	25	< 0.2	0,5	2	5	28	16	2,4	< 0.4	40	0,8	80
FK 139	230	21,8	4	130	614	28	< 0.2	1,1	2	6	34	25	2,6	0,7	40	0,7	100
FK 140	197	17,3	3	123	550	26	< 0.2	0,7	2	6	32	21	2,2	0,5	40	0,7	90
FK 141	201	17,5	4	135	648	27	< 0.2	1,5	2	7	32	22	2,3	0,5	50	0,8	100
FK 142	177	16,6	3	126	542	24	< 0.2	0,8	1	5	29	20	1,9	0,5	40	0,5	110
FK 143	149	9,9	3	140	592	22	< 0.2	0,4	2	5	34	17	3,2	0,5	40	0,8	130
FK 144	184	16,4	4	140	639	24	< 0.2	1,1	2	5	48	22	2,2	0,5	40	0,7	90
FK 145	197	15,2	4	140	596	25	< 0.2	0,3	1	26	58	9	1,6	< 0.4	290	1,6	100
FK 146	193	17	4	135	598	25	< 0.2	0,9	2	5	27	18	2,3	0,4	40	0,6	100

	Sc	Y	Zr	Hf	V	Nb	Та	Cr	Мо	W	Со	Ni	Th	U
FK 105	17	28	147	4,3	135	17	1,4	110	< 2	3	17	50	14	4,1
FK 106	17	29	168	4,7	112	17	1,4	110	< 2	2	16	50	14,4	4
FK 107	17	27	168	4,3	122	17	1,4	110	< 2	3	16	40	14,1	3,7
FK 108	17	26	164	4,6	119	17	1,4	110	< 2	3	15	50	13,8	3,7
FK 109	15	29	160	4,1	110	16	1,3	100	< 2	4	15	40	12,7	3,6
FK 110	18	28	152	4,5	112	17	1,4	130	< 2	3	16	100	13,9	4
FK 111	18	27	152	4,6	128	17	1,4	110	< 2	3	16	50	14,2	4
FK 112	14	23	129	3,5	94	14	1,3	80	< 2	2	13	40	11,7	3,4
FK 113	17	29	168	4,7	135	17	1,4	100	< 2	3	16	40	14,2	4,1
FK 114	17	28	164	4,5	125	16	1,4	100	< 2	2	17	40	14,2	4
FK 115	17	28	153	4,1	105	15	1,3	100	< 2	2	16	40	13,3	3,7
FK 116	17	29	166	4,4	115	16	1,5	110	< 2	2	17	40	14,2	4,1
FK 117	16	27	159	4,3	109	15	1,3	100	< 2	2	16	40	13,4	4,1
FK 118	17	29	159	4,3	120	15	1,4	100	< 2	3	16	40	14,7	4,2
FK 119	17	27	157	4,4	119	16	1,3	100	< 2	3	16	40	14,4	4
FK 120	18	28	164	4,4	120	16	1,4	110	< 2	4	17	40	14,6	4
FK 121	17	28	155	4,3	119	16	1,3	110	< 2	2	16	50	14,6	4,1
FK 122	17	28	157	4,5	111	15	1,4	100	< 2	2	19	50	14,2	4
FK 123	17	28	157	4,3	122	16	1,6	100	< 2	2	17	50	14,3	4,1
FK 124	17	28	163	4,5	111	17	1,4	110	< 2	2	16	40	14,4	3,9
FK 125	18	27	142	4,1	134	16	1,4	110	< 2	2	18	50	14,4	4,4
FK 126	15	25	149	4,2	100	14	1,4	90	< 2	2	14	40	12,7	3,5
FK 127	17	29	153	4,3	116	16	1,4	100	< 2	2	16	50	14,1	4
FK 128	17	28	149	4,5	119	17	1,6	110	< 2	3	18	50	15,5	4,3
FK 129	17	27	138	3,9	110	15	1,4	100	< 2	2	16	40	13,9	4
FK 130	18	28	138	4	126	17	1,5	110	< 2	3	17	50	14,6	4,1
FK 131	17	28	144	4,4	118	15	2	100	< 2	3	16	40	14	4
FK 132	16	26	128	3,9	91	15	1,4	100	< 2	2	14	40	13,1	3,4
FK 133	16	28	142	4,3	107	16	1,6	100	< 2	3	16	40	13,9	3,9
FK 134	16	27	147	4,3	117	16	1,5	100	< 2	3	15	40	14	4
FK 135	18	27	136	3,9	121	15	1,5	110	< 2	3	16	40	14,1	3,8
FK 136	16	26	131	3,6	99	15	1,9	100	< 2	2	14	40	12,9	3,7
FK 137	18	29	147	3,9	122	15	1,5	100	< 2	2	16	40	14,1	4
FK 138	17	29	161	4,5	129	16	1,7	100	< 2	4	16	40	14,3	4,1
FK 139	18	28	144	4,3	125	17	1,6	120	< 2	3	18	50	15,5	4,5
FK 140	15	25	136	4,4	103	16	1,6	110	< 2	2	16	40	14	4,1
FK 141	17	28	159	4,9	110	18	1,6	110	< 2	3	17	40	15	4,2
FK 142	15	26	143	4	98	14	1,6	90	< 2	1	14	40	12,9	3,7
FK 143	15	26	157	4,5	88	14	1,3	130	< 2	3	14	90	13	3,5
FK 144	17	27	147	4,5	111	15	1,5	100	< 2	2	16	40	13,9	3,9
FK 145	17	27	141	4	120	15	1,4	100	< 2	2	15	40	13,8	3,8
FK 146	17	25	116	3,5	110	15	1,3	110	< 2	2	14	40	13,3	3,7

	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
FK 105	42	81,7	9,46	35,4	7	1,43	6,2	0,9	5,5	1,1	3,1	0,46	3,1	0,47
FK 106	42,9	84,2	9,68	36,9	7,1	1,52	6,3	1	6	1,1	3,3	0,45	3,3	0,5
FK 107	41,9	83,1	9,46	37,3	7	1,05	6,1	0,9	5,4	1,1	3	0,44	3	0,44
FK 108	39,2	77	8,91	33,4	6,6	1,32	5,7	0,9	5,4	1	3,1	0,45	3	0,47
FK 109	38	75,4	9,02	32,7	6,7	0,93	5,5	0,9	5,2	0,9	2,7	0,42	2,7	0,42
FK 110	41,3	81	9,25	34,8	7,2	1,37	5,9	0,9	5,6	1,1	3,1	0,45	3	0,48
FK 111	41,9	81,7	9,38	35,9	7,2	1,38	6,3	1	5,7	1,1	3,3	0,47	3	0,47
FK 112	34,7	69,7	8,21	30,4	6	1,19	5	0,8	4,7	0,9	2,5	0,37	2,4	0,38
FK 113	42,7	84,9	9,89	37	7,6	1,47	5,9	0,9	5,7	1,1	3	0,46	3	0,47
FK 114	40,7	82,6	9,54	36,9	7,2	1,42	5,8	0,9	5,6	1,1	3,1	0,46	3	0,48
FK 115	39,4	76,9	9,11	34,4	6,9	1,41	5,7	0,9	5,2	1	3	0,44	2,9	0,45
FK 116	42,6	83,5	9,71	36,4	7,2	1,49	5,8	0,9	5,7	1,1	3,2	0,45	3	0,47
FK 117	40,3	79,5	9,27	34,9	6,9	1,4	5,6	0,9	5,4	1	3	0,43	2,7	0,43
FK 118	42,9	84,7	9,96	36,8	7,3	1,51	6	1	5,8	1,1	3,2	0,47	3	0,45
FK 119	41,9	82,3	9,65	37	7,5	1,47	5,9	1	5,5	1,1	3	0,47	2,9	0,46
FK 120	42,8	83,9	9,89	36,4	7,4	1,52	5,9	1	5,6	1	3,1	0,44	3	0,46
FK 121	42,8	85,2	9,98	36,9	7,3	1,49	5,9	1	5,7	1,1	3,2	0,45	3	0,44
FK 122	41,7	84	9,75	36,1	7,5	1,45	5,9	1	5,4	1,1	3,1	0,44	2,8	0,45
FK 123	41,7	82,8	9,65	36,3	7,2	1,43	5,8	1	5,3	1,1	3,1	0,45	3,1	0,45
FK 124	43	84,3	9,95	37,6	7,3	1,49	6	1	5,6	1,1	3,2	0,48	3	0,48
FK 125	42,2	83,3	9,8	36,3	7,2	1,45	6	0,9	5,5	1,1	3,1	0,46	3	0,45
FK 126	36,9	74	8,81	33,1	6,6	1,31	5,3	0,9	5,2	1	2,8	0,43	2,9	0,42
FK 127	41,3	80,9	9,68	35,8	7,4	1,4	5,8	0,9	5,6	1,1	3,2	0,44	3	0,5
FK 128	45,7	88,7	10,6	39,1	7,7	1,55	6,5	1	6,1	1,2	3,5	0,5	3,1	0,48
FK 129	40,9	81,6	9,38	36,4	7,4	1,46	5,6	0,9	5,4	1	3	0,42	2,8	0,43
FK 130	43,4	85,2	9,97	38	7,1	1,51	5,9	0,9	5,6	1	3,1	0,48	3	0,44
FK 131	41,2	81,4	9,5	35,8	6,9	1,5	5,9	0,9	5,6	1	3,1	0,45	2,9	0,45
FK 132	39,2	76	9,11	34,1	7	1,37	5,4	0,9	5,3	1	2,9	0,43	2,7	0,41
FK 133	43,1	83,7	9,77	37,5	7,2	1,41	5,8	0,9	5,6	1,1	3,1	0,47	2,9	0,45
FK 134	42,6	82,2	9,79	36,7	7,1	1,42	5,8	0,9	5,6	1,1	3	0,44	2,9	0,45
FK 135	42,1	84,7	9,63	36,4	7,4	1,43	5,9	0,9	5,5	1	3	0,44	2,7	0,41
FK 136	39,2	75,7	9,09	34,4	6,6	1,37	5,6	0,9	5,3	1	2,8	0,43	2,7	0,41
FK 137	42,5	83,6	9,69	36,1	7,3	1,37	6	0,9	5,6	1,1	3,1	0,44	2,9	0,44
FK 138	42,3	84,4	9,84	36,7	7,5	1,44	5,9	0,9	5,8	1,1	3,2	0,45	2,9	0,46
FK 139	46,2	91,1	10,7	40,4	7,9	1,56	6,4	1	6	1,1	3,3	0,48	3	0,45
FK 140	42,5	82,5	9,84	36,6	7,3	1,45	5,9	1	5,4	1,1	3	0,44	2,9	0,44
FK 141	45,1	88,5	10,3	39	7,9	1,52	6,4	1	5,8	1,1	3,3	0,47	3	0,47
FK 142	39,7	77,9	9,01	33,9	7	1,36	5,4	0,9	5,4	1	3	0,43	2,8	0,43
FK 143	39,8	78,3	9,03	34,5	6,8	1,3	5,6	0,9	5,2	1	2,9	0,44	2,8	0,44
FK 144	41,7	83,1	9,74	36,2	7,3	1,42	5,8	0,9	5,5	1	3	0,45	2,9	0,46
FK 145	41,4	81	9,4	35,2	6,9	1,5	5,8	0,9	5,2	1	2,9	0,41	2,9	0,44
FK 146	39,4	76,8	9,11	33,9	6,6	1,35	5,4	0,8	4,9	1	2,8	0,38	2,5	0,4
											, ,			,

Die Analysen wurden bei Actlabs, Ancaster, Ontario, Canada nach Code 4-Litho angefertigt (siehe MÜLLER 2020)

Veröffentlicht: Mai 2023 (www.geosaarmueller.de)